1. Plane A is parallel to plane B. Plane C intersects plane A in line m and intersects plane B in line n. Lines m and n are
1) intersecting
2) parallel
3) perpendicular
4) skew

2. In the diagram of trapezoid $ABCD$ below, diagonals AC and BD intersect at E and $\triangle ABC \cong \triangle DCB$.

Which statement is true based on the given information?
1) $AC \cong BC$
2) $CD \cong AD$
3) $\angle CDE \cong \angle BAD$
4) $\angle CDB \cong \angle BAC$

3. A polygon is transformed according to the rule: $(x, y) \rightarrow (x + 2, y)$. Every point of the polygon moves two units in which direction?
1) up
2) down
3) left
4) right

4. The coordinates of the vertices of parallelogram $ABCD$ are $A(-3, 2)$, $B(-2, -1)$, $C(4, 1)$, and $D(3, 4)$. The slopes of which line segments could be calculated to show that $ABCD$ is a rectangle?
1) AB and DC
2) AB and BC
3) AD and BC
4) AC and BD

5. In the diagram below, lines n and m are cut by transversals p and q.

What value of x would make lines n and m parallel?
1) 110
2) 80
3) 70
4) 50

6. The statement "x is a multiple of 3, and x is an even integer" is true when x is equal to
1) 9
2) 8
3) 3
4) 6
7 Quadrilateral $MATH$ has coordinates $M(1,1)$, $A(-2,5)$, $T(3,5)$, and $H(6,1)$. Prove that quadrilateral $MATH$ is a rhombus and prove that it is not a square. [The use of the grid is optional.]

8 What is the measure of an interior angle of a regular octagon?
 1) 45°
 2) 60°
 3) 120°
 4) 135°

9 The point $(3,-2)$ is rotated 90° about the origin and then dilated by a scale factor of 4. What are the coordinates of the resulting image?
 1) $(-12,8)$
 2) $(12,-8)$
 3) $(8,12)$
 4) $(-8,-12)$

10 The diagram below shows a right pentagonal prism.

Which statement is always true?
 1) $\overline{BC} \parallel \overline{ED}$
 2) $\overline{FG} \parallel \overline{CD}$
 3) $\overline{FJ} \parallel \overline{IH}$
 4) $\overline{GB} \parallel \overline{HC}$

11 Line k is drawn so that it is perpendicular to two distinct planes, P and R. What must be true about planes P and R?
 1) Planes P and R are skew.
 2) Planes P and R are parallel.
 3) Planes P and R are perpendicular.
 4) Plane P intersects plane R but is not perpendicular to plane R.
12. In the diagram below of parallelogram $ABCD$ with diagonals AC and BD, $m\angle 1 = 45$ and $m\angle DCB = 120$. What is the measure of $\angle 2$?
 1) 15°
 2) 30°
 3) 45°
 4) 60°

13. In the diagram of circle O below, chord AB intersects chord CD at E, $DE = 2x + 8$, $EC = 3$, $AE = 4x - 3$, and $EB = 4$. What is the value of x?
 1) 1
 2) 3.6
 3) 5
 4) 10.25

14. The lines $3y + 1 = 6x + 4$ and $2y + 1 = x - 9$ are
 1) parallel
 2) perpendicular
 3) the same line
 4) neither parallel nor perpendicular

15. Line segment AB has endpoints $A(2,-3)$ and $B(-4,6)$. What are the coordinates of the midpoint of AB?
 1) $(-2,3)$
 2) $(-1,1\frac{1}{2})$
 3) $(-1,3)$
 4) $(3,4\frac{1}{2})$

16. In the diagram below of rhombus $ABCD$, $m\angle C = 100$. What is $m\angle DBC$?
 1) 40
 2) 45
 3) 50
 4) 80
17 When solved graphically, what is the solution to the following system of equations?

\[\begin{align*}
 y &= x^2 - 4x + 6 \\
 y &= x + 2
\end{align*} \]

1) (1, 4)
2) (4, 6)
3) (1, 3) and (4, 6)
4) (3, 1) and (6, 4)

18 In the diagram below, \(\overline{BFCE}, \overline{AB} \perp \overline{BE}, \overline{DE} \perp \overline{BE}, \) and \(\angle BFD \cong \angle ECA. \) Prove that \(\triangle ABC \sim \triangle DEF. \)

19 Quadrilateral \(MNOP \) is a trapezoid with \(\overline{MN} \parallel \overline{OP}. \) If \(M'N'O'P' \) is the image of \(MNOP \) after a reflection over the x-axis, which two sides of quadrilateral \(M'N'O'P' \) are parallel?

1) \(M'N' \) and \(O'P' \)
2) \(M'N' \) and \(N'O' \)
3) \(P'M' \) and \(O'P' \)
4) \(P'M' \) and \(N'O' \)

20 Which equation represents the line parallel to the line whose equation is \(4x + 2y = 14 \) and passing through the point \((2, 2) \)?

1) \(y = -2x \)
2) \(y = -2x + 6 \)
3) \(y = \frac{1}{2} x \)
4) \(y = \frac{1}{2} x + 1 \)

21 As shown on the set of axes below, \(\triangle GHS \) has vertices \(G(3, 1), H(5, 3), \) and \(S(1, 4). \) Graph and state the coordinates of \(\triangle G''H''S'' \), the image of \(\triangle GHS \) after the transformation \(T_{-3, 1} \circ D_2. \)

22 Which statement is true about every parallelogram?

1) All four sides are congruent.
2) The interior angles are all congruent.
3) Two pairs of opposite sides are congruent.
4) The diagonals are perpendicular to each other.
23. If the diagonals of a quadrilateral do not bisect each other, then the quadrilateral could be a
1) rectangle
2) rhombus
3) square
4) trapezoid

24. What is the equation of a line that passes through the point \((-3,-11)\) and is parallel to the line whose equation is \(2x - y = 4\)?
1) \(y = 2x + 5\)
2) \(y = 2x - 5\)
3) \(y = \frac{1}{2}x + \frac{25}{2}\)
4) \(y = -\frac{1}{2}x - \frac{25}{2}\)

25. In the diagram below of right triangle \(ACB\), altitude \(CD\) intersects \(AB\) at \(D\). If \(AD = 3\) and \(DB = 4\), find the length of \(CD\) in simplest radical form.

26. Given: Quadrilateral \(ABCD\) with \(AB \cong CD\), \(AD \cong BC\), and diagonal \(BD\) is drawn
Prove: \(\angle BDC \cong \angle ABD\)

27. The diagonal \(AC\) is drawn in parallelogram \(ABCD\). Which method can not be used to prove that \(\triangle ABC \cong \triangle CDA\)?
1) SSS
2) SAS
3) SSA
4) ASA

28. A right circular cylinder has a volume of 1,000 cubic inches and a height of 8 inches. What is the radius of the cylinder to the nearest tenth of an inch?
1) 6.3
2) 11.2
3) 19.8
4) 39.8

29. The diagram below shows the construction of the bisector of \(\angle ABC\).

Which statement is not true?
1) \(m\angle EBF = \frac{1}{2} m\angle ABC\)
2) \(m\angle DBF = \frac{1}{2} m\angle ABC\)
3) \(m\angle EBF = m\angle ABC\)
4) \(m\angle DBF = m\angle EBF\)
30. What is the slope of a line perpendicular to the line whose equation is \(y = -\frac{2}{3}x - 5 \)?

1) \(\frac{3}{2} \)

2) \(\frac{2}{3} \)

3) \(\frac{2}{3} \)

4) \(\frac{3}{2} \)

31. In the diagram below of circle \(O \), chord \(AB \parallel \) chord \(CD \), and chord \(CD \parallel \) chord \(EF \).

Which statement must be true?

1) \(CE \cong DF \)

2) \(AC \cong DF \)

3) \(AC \cong CE \)

4) \(EF \cong CD \)

32. A sphere has a diameter of 18 meters. Find the volume of the sphere, in cubic meters, in terms of \(\pi \).

33. What is the equation of a line that is parallel to the line whose equation is \(y = x + 2 \)?

1) \(x + y = 5 \)

2) \(2x + y = -2 \)

3) \(y - x = -1 \)

4) \(y - 2x = 3 \)

34. In the diagram below of \(\triangle ACT \), \(D \) is the midpoint of \(AC \), \(O \) is the midpoint of \(AT \), and \(G \) is the midpoint of \(CT \).

If \(AC = 10 \), \(AT = 18 \), and \(CT = 22 \), what is the perimeter of parallelogram \(CDOG \)?

1) 21

2) 25

3) 32

4) 40

35. In the diagram below of \(\triangle ABC \), \(DE \) is a midsegment of \(\triangle ABC \), \(DE = 7 \), \(AB = 10 \), and \(BC = 13 \). Find the perimeter of \(\triangle ABC \).
36. On the set of axes below, graph and label $\triangle DEF$ with vertices at $D(-4,-4), E(-2,2)$, and $F(8,-2)$. If G is the midpoint of EF and H is the midpoint of DF, state the coordinates of G and H and label each point on your graph. Explain why $GH \parallel DE$.

37. How many points are both 4 units from the origin and also 2 units from the line $y = 4$?
 1) 1
 2) 2
 3) 3
 4) 4

38. What is an equation of a circle with center $(7,-3)$ and radius 4?
 1) $(x-7)^2 + (y+3)^2 = 4$
 2) $(x+7)^2 + (y-3)^2 = 4$
 3) $(x-7)^2 + (y+3)^2 = 16$
 4) $(x+7)^2 + (y-3)^2 = 16$

39. In the diagram below of circle O, chords $\overline{DF}, \overline{DE}, \overline{FG}$, and \overline{EG} are drawn such that $m\angle DF : m\angle FE : m\angle EG : m\angle GD = 5:2:1:7$. Identify one pair of inscribed angles that are congruent to each other and give their measure.

40. In the diagram below, quadrilateral $JUMP$ is inscribed in a circle.

 Opposite angles J and M must be
 1) right
 2) complementary
 3) congruent
 4) supplementary
41 On the diagram below, use a compass and straightedge to construct the bisector of \(\angle ABC \). [Leave all construction marks.]

42 In the diagram below, \(\triangle ABC \sim \triangle DEF \), \(DE = 4 \), \(AB = x \), \(AC = x + 2 \), and \(DF = x + 6 \). Determine the length of \(AB \). [Only an algebraic solution can receive full credit.]

43 Given three distinct quadrilaterals, a square, a rectangle, and a rhombus, which quadrilaterals must have perpendicular diagonals?
1) the rhombus, only
2) the rectangle and the square
3) the rhombus and the square
4) the rectangle, the rhombus, and the square

44 Which graph represents a circle with the equation \((x - 3)^2 + (y + 1)^2 = 4\)?
45 Which graph could be used to find the solution to the following system of equations?
\[y = -x + 2 \]
\[y = x^2 \]

1)

2)

3)

4)

46 What are the center and radius of a circle whose equation is \((x - A)^2 + (y - B)^2 = C\)?

1) center = \((A, B)\); radius = \(C\)
2) center = \((-A, -B)\); radius = \(C\)
3) center = \((A, B)\); radius = \(\sqrt{C}\)
4) center = \((-A, -B)\); radius = \(\sqrt{C}\)

47 Write an equation of the perpendicular bisector of the line segment whose endpoints are \((-1, 1)\) and \((7, -5)\). [The use of the grid below is optional]

48 If two different lines are perpendicular to the same plane, they are

1) collinear
2) coplanar
3) congruent
4) consecutive
49 In the diagram below, which transformation was used to map $\triangle ABC$ to $\triangle A'B'C'$?

1) dilation
2) rotation
3) reflection
4) glide reflection

50 In the diagram below of $\triangle ABC$, $\overrightarrow{TV} \parallel \overrightarrow{BC}$, $AT = 5$, $TB = 7$, and $AV = 10$.

What is the length of \overline{VC}?

1) $3 \frac{1}{2}$
2) $7 \frac{1}{7}$
3) 14
4) 24

51 The coordinates of point A are $(-3a, 4b)$. If point A' is the image of point A reflected over the line $y = x$, the coordinates of A' are

1) $(4b, -3a)$
2) $(3a, 4b)$
3) $(-3a, -4b)$
4) $(-4b, -3a)$

52 Which transformation produces a figure similar but not congruent to the original figure?

1) $T_{1,3}$
2) $D_{\frac{1}{2}}$
3) R_{90°
4) $r_{y=x}$

53 In the diagram below of $\triangle ABC$, \overline{CD} is the bisector of $\angle BCA$, \overline{AE} is the bisector of $\angle CAB$, and \overline{BG} is drawn.

Which statement must be true?

1) $DG = EG$
2) $AG = BG$
3) $\angle AEB \equiv \angle AEC$
4) $\angle DBG \equiv \angle EBG$
54 What is an equation of the circle with a radius of 5 and center at (1, -4)?
 1) \((x + 1)^2 + (y - 4)^2 = 5\)
 2) \((x - 1)^2 + (y + 4)^2 = 5\)
 3) \((x + 1)^2 + (y - 4)^2 = 25\)
 4) \((x - 1)^2 + (y + 4)^2 = 25\)

55 On the set of axes below, graph the locus of points that are four units from the point \((2, 1)\). On the same set of axes, graph the locus of points that are two units from the line \(x = 4\). State the coordinates of all points that satisfy both conditions.

56 A right circular cylinder has an altitude of 11 feet and a radius of 5 feet. What is the lateral area, in square feet, of the cylinder, to the nearest tenth?
 1) 172.7
 2) 172.8
 3) 345.4
 4) 345.6

57 The diagram below shows \(\overline{AB}\) and \(\overline{DE}\).

Which transformation will move \(\overline{AB}\) onto \(\overline{DE}\) such that point \(D\) is the image of point \(A\) and point \(E\) is the image of point \(B\)?
 1) \(T_{3,-3}\)
 2) \(D_{\frac{1}{2}}\)
 3) \(R_{90^\circ}\)
 4) \(r_{y=x}\)

58 In circle \(O\), a diameter has endpoints \((-5, 4)\) and \((3, -6)\). What is the length of the diameter?
 1) \(\sqrt{2}\)
 2) \(2\sqrt{2}\)
 3) \(\sqrt{10}\)
 4) \(2\sqrt{41}\)

59 The endpoints of \(\overline{PQ}\) are \(P(-3, 1)\) and \(Q(4, 25)\). Find the length of \(\overline{PQ}\).
60. What is the slope of a line perpendicular to the line whose equation is $5x + 3y = 8$?

1) $\frac{5}{3}$
2) $\frac{3}{5}$
3) $\frac{-3}{5}$
4) $\frac{-5}{3}$

61. Which transformation can map the letter S onto itself?

1) glide reflection
2) translation
3) line reflection
4) rotation

62. What is an equation of the line that passes through the point $(-2,3)$ and is parallel to the line whose equation is $y = \frac{3}{2}x - 4$?

1) $y = \frac{-2}{3}x$
2) $y = \frac{-2}{3}x + \frac{5}{3}$
3) $y = \frac{3}{2}x$
4) $y = \frac{3}{2}x + 6$

63. What are the center and the radius of the circle whose equation is $(x - 3)^2 + (y + 3)^2 = 36$?

1) center = $(3, -3)$; radius = 6
2) center = $(-3, 3)$; radius = 6
3) center = $(3, -3)$; radius = 36
4) center = $(-3, 3)$; radius = 36

64. In the diagram of circle O below, chord CD is parallel to diameter AOB and $m\angle C = 30$.

What is $m\angle CD$?

1) 150
2) 120
3) 100
4) 60

65. The base of a pyramid is a rectangle with a width of 6 cm and a length of 8 cm. Find, in centimeters, the height of the pyramid if the volume is 288 cm3.

66. Which set of numbers represents the lengths of the sides of a triangle?

1) $\{5, 18, 13\}$
2) $\{6, 17, 22\}$
3) $\{16, 24, 7\}$
4) $\{26, 8, 15\}$

67. What is the image of the point $(-5, 2)$ under the translation $T_{3, -4}$?

1) $(-9, 5)$
2) $(-8, 6)$
3) $(-2, -2)$
4) $(-15, -8)$
68 Triangle ABC has vertices $A(-2, 2), B(-1, -3),$ and $C(4, 0)$. Find the coordinates of the vertices of $	riangle A'B'C'$, the image of $\triangle ABC$ after the transformation r_{x-axis}. [The use of the grid is optional.]

69 In the diagram below, $\triangle ABC \cong \triangle XYZ$.

Which statement must be true?
1) $\angle C \cong \angle Y$
2) $\angle A \cong \angle X$
3) $\overline{AC} \cong \overline{YZ}$
4) $\overline{CB} \cong \overline{XZ}$

70 The figure in the diagram below is a triangular prism.

Which statement must be true?
1) $\overline{DE} \cong \overline{AB}$
2) $\overline{AD} \cong \overline{BC}$
3) $\overline{AD} || \overline{CE}$
4) $\overline{DE} || \overline{BC}$

71 In the diagram below of circle O, diameter \overline{AOB} is perpendicular to chord \overline{CD} at point E, $OA = 6$, and $OE = 2$.

What is the length of \overline{CE}?
1) $4\sqrt{3}$
2) $2\sqrt{3}$
3) $8\sqrt{2}$
4) $4\sqrt{2}$
72 In the diagram below, quadrilateral $STAR$ is a rhombus with diagonals SA and TR intersecting at E. $ST = 3x + 30$, $SR = 8x - 5$, $SE = 3z$, $TE = 5z + 5$, $AE = 4z - 8$, $m\angle RTA = 5y - 2$, and $m\angle TAS = 9y + 8$. Find SR, RT, and $m\angle TAS$.

74 Write a statement that is logically equivalent to the statement “If two sides of a triangle are congruent, the angles opposite those sides are congruent.” Identify the new statement as the converse, inverse, or contrapositive of the original statement.

75 In plane P, lines m and n intersect at point A. If line k is perpendicular to line m and line n at point A, then line k is
1) contained in plane P
2) parallel to plane P
3) perpendicular to plane P
4) skew to plane P

76 What is the length, to the nearest tenth, of the line segment joining the points $(-4,2)$ and $(146,52)$?
1) 141.4
2) 150.5
3) 151.9
4) 158.1

77 What is the negation of the statement “I am not going to eat ice cream”?
1) I like ice cream.
2) I am going to eat ice cream.
3) If I eat ice cream, then I like ice cream.
4) If I don’t like ice cream, then I don’t eat ice cream.

78 The volume of a cylinder is $12,566.4 \text{ cm}^3$. The height of the cylinder is 8 cm. Find the radius of the cylinder to the nearest tenth of a centimeter.
79 Using a compass and straightedge, construct the angle bisector of \(\triangle ABC \) shown below. [Leave all construction marks.]

80 The diagram below shows the construction of a line through point \(P \) perpendicular to line \(m \).

Which statement is demonstrated by this construction?
1) If a line is parallel to a line that is perpendicular to a third line, then the line is also perpendicular to the third line.
2) The set of points equidistant from the endpoints of a line segment is the perpendicular bisector of the segment.
3) Two lines are perpendicular if they are equidistant from a given point.
4) Two lines are perpendicular if they intersect to form a vertical line.

81 What is the slope of a line perpendicular to the line whose equation is \(y = 3x + 4 \)?
1) \(\frac{1}{3} \)
2) \(-\frac{1}{3} \)
3) 3
4) \(-3\)

82 In the diagram below, quadrilateral \(ABCD \) is inscribed in circle \(O \), \(AB \parallel DC \), and diagonals \(AC \) and \(BD \) are drawn. Prove that \(\triangle ACD \cong \triangle BDC \).

83 In \(\triangle PQR \), \(PQ = 8 \), \(QR = 12 \), and \(RP = 13 \). Which statement about the angles of \(\triangle PQR \) must be true?
1) \(m\angle Q > m\angle P > m\angle R \)
2) \(m\angle Q > m\angle R > m\angle P \)
3) \(m\angle R > m\angle P > m\angle Q \)
4) \(m\angle P > m\angle R > m\angle Q \)
84. Point \(P \) lies on line \(m \). Point \(P \) is also included in distinct planes \(Q, R, S, \) and \(T \). At most, how many of these planes could be perpendicular to line \(m \)?
1) 1
2) 2
3) 3
4) 4

85. Find, in degrees, the measures of both an interior angle and an exterior angle of a regular pentagon.

86. In the diagram below of circle \(O \), chords \(AE \) and \(DC \) intersect at point \(B \), such that \(m\widehat{AC} = 36 \) and \(m\widehat{DE} = 20 \).

Which plane must be perpendicular to plane \(AEFG \)?
1) \(ABCE \)
2) \(BCDH \)
3) \(CDEF \)
4) \(HDFG \)

87. In the diagram below, \(\overrightarrow{AB} \) is perpendicular to plane \(AEFG \).

What is \(m\angle ABC \)?
1) 56
2) 36
3) 28
4) 8

88. The vertices of \(\triangle ABC \) are \(A(-1,-2), B(-1,2) \) and \(C(6,0) \). Which conclusion can be made about the angles of \(\triangle ABC \)?
1) \(m\angle A = m\angle B \)
2) \(m\angle A = m\angle C \)
3) \(m\angle ACB = 90 \)
4) \(m\angle ABC = 60 \)

89. Find an equation of the line passing through the point \((6,5)\) and perpendicular to the line whose equation is \(2y + 3x = 6\).
90 In the diagram of quadrilateral $ABCD$, $AB \parallel CD$, $\angle ABC \cong \angle CDA$, and diagonal AC is drawn.

Which method can be used to prove $\triangle ABC$ is congruent to $\triangle CDA$?
1) AAS
2) SSA
3) SAS
4) SSS

91 The diagram below shows a rectangular prism.

Which pair of edges are segments of lines that are coplanar?
1) AB and DH
2) AE and DC
3) BC and EH
4) CG and EF

92 Given: $\triangle ABC$ with vertices $A(-6,-2)$, $B(2,8)$, and $C(6,-2)$. AB has midpoint D, BC has midpoint E, and AC has midpoint F.

Prove: $ADEF$ is a parallelogram

$ADEF$ is not a rhombus

[The use of the grid is optional.]

93 Given $\triangle ABC$ with base $AFEDC$, median BF, altitude BD, and BE bisects $\angle ABC$, which conclusion is valid?

1) $\angle FAB \cong \angle ABF$
2) $\angle ABF \cong \angle CBD$
3) $CE \cong EA$
4) $CF \cong FA$
94. As shown in the diagram below, \overline{AC} bisects $\angle BAD$ and $\angle B \cong \angle D$.

Which method could be used to prove $\triangle ABC \cong \triangle ADC$?

1) SSS
2) AAA
3) SAS
4) AAS

95. What is the negation of the statement “The Sun is shining”?

1) It is cloudy.
2) It is daytime.
3) It is not raining.
4) The Sun is not shining.

96. If the endpoints of \overline{AB} are $A(-4,5)$ and $B(2,-5)$, what is the length of \overline{AB}?

1) $2\sqrt{34}$
2) 2
3) $\sqrt{61}$
4) 8

97. Using a compass and straightedge, construct the bisector of the angle shown below. [Leave all construction marks.]

98. The diameter of a circle has endpoints at $(-2,3)$ and $(6,3)$. What is an equation of the circle?

1) $(x-2)^2 + (y-3)^2 = 16$
2) $(x-2)^2 + (y-3)^2 = 4$
3) $(x+2)^2 + (y+3)^2 = 16$
4) $(x+2)^2 + (y+3)^2 = 4$

99. In the diagram below of isosceles trapezoid $DEFG$, $DE \parallel GF$, $DE = 4x - 2$, $EF = 3x + 2$, $FG = 5x - 3$, and $GD = 2x + 5$. Find the value of x.
100. A packing carton in the shape of a triangular prism is shown in the diagram below.

What is the volume, in cubic inches, of this carton?
1) 20
2) 60
3) 120
4) 240

101. In the diagram of \(\triangle ABC \) below, \(\overline{AB} \cong \overline{AC} \). The measure of \(\angle B \) is 40°.

What is the measure of \(\angle A \)?
1) 40°
2) 50°
3) 70°
4) 100°

102. The rectangle \(ABCD \) shown in the diagram below will be reflected across the \(x \)-axis.

What will not be preserved?
1) slope of \(\overline{AB} \)____
2) parallelism of \(\overline{AB} \) and \(\overline{CD} \)
3) length of \(\overline{AB} \)
4) measure of \(\angle A \)

103. Triangle \(ABC \) has vertices \(A(1,3) \), \(B(0,1) \), and \(C(4,0) \). Under a translation, \(A' \), the image point of \(A \), is located at \((4,4) \). Under this same translation, point \(C' \) is located at
1) \((7,1) \)
2) \((5,3) \)
3) \((3,2) \)
4) \((1,-1) \)
104 Which diagram shows the construction of the perpendicular bisector of AB?

1)

2)

3)

4)

105 What is the negation of the statement “Squares are parallelograms”?

1) Parallelograms are squares.
2) Parallelograms are not squares.
3) It is not the case that squares are parallelograms.
4) It is not the case that parallelograms are squares.

106 The two lines represented by the equations below are graphed on a coordinate plane.

$x + 6y = 12$

$3(x - 2) = -y - 4$

Which statement best describes the two lines?

1) The lines are parallel.
2) The lines are the same line.
3) The lines are perpendicular.
4) The lines intersect at an angle other than 90°.

107 In the diagram below of circle O, secant AB intersects circle O at D, secant AOC intersects circle O at E, $AE = 4$, $AB = 12$, and $DB = 6$.

What is the length of OC?

1) 4.5
2) 7
3) 9
4) 14
108 The diagonals of a quadrilateral are congruent but do not bisect each other. This quadrilateral is
1) an isosceles trapezoid
2) a parallelogram
3) a rectangle
4) a rhombus

109 The endpoints of \overline{CD} are $C(-2,-4)$ and $D(6,2)$. What are the coordinates of the midpoint of \overline{CD}?
1) $(2,3)$
2) $(2,-1)$
3) $(4,-2)$
4) $(4,3)$

110 On the set of axes below, sketch the points that are 5 units from the origin and sketch the points that are 2 units from the line $y = 3$. Label with an \times all points that satisfy both conditions.

111 What is the volume, in cubic centimeters, of a cylinder that has a height of 15 cm and a diameter of 12 cm?
1) 180π
2) 540π
3) 675π
4) $2,160\pi$

112 Triangle ABC has vertices $A(3,3)$, $B(7,9)$, and $C(11,3)$. Determine the point of intersection of the medians, and state its coordinates. [The use of the set of axes below is optional.]

113 Given the equations: $y = x^2 - 6x + 10$

$y + x = 4$

What is the solution to the given system of equations?
1) $(2,3)$
2) $(3,2)$
3) $(2,2)$ and $(1,3)$
4) $(2,2)$ and $(3,1)$
114 Which diagram shows the construction of an equilateral triangle?

115 In the diagram below, circle A and circle B are shown.

What is the total number of lines of tangency that are common to circle A and circle B?

1) 1
2) 2
3) 3
4) 4

116 In the diagram below of $\triangle GJK$, H is a point on \overline{GJ}, $\overline{HJ} \cong \overline{JK}$, $m\angle G = 28$, and $m\angle GJK = 70$. Determine whether $\triangle GHK$ is an isosceles triangle and justify your answer.
117 The diagram below shows the construction of the perpendicular bisector of AB.

Which statement is not true?
1) $AC = CB$
2) $CB = \frac{1}{2} AB$
3) $AC = 2AB$
4) $AC + CB = AB$

118 What is the image of the point $(2, -3)$ after the transformation r_y-axis?
1) $(2, 3)$
2) $(-2, -3)$
3) $(-2, 3)$
4) $(-3, 2)$

119 A straightedge and compass were used to create the construction below. Arc EF was drawn from point B, and arcs with equal radii were drawn from E and F.

Which statement is false?
1) $m\angle ABD = m\angle DBC$
2) $\frac{1}{2} (m\angle ABC) = m\angle ABD$
3) $2(m\angle DBC) = m\angle ABC$
4) $2(m\angle ABC) = m\angle CBD$

120 Write an equation of the line that passes through the point $(6, -5)$ and is parallel to the line whose equation is $2x - 3y = 11$.

121 In isosceles trapezoid $ABCD$, $\overline{AB} \cong \overline{CD}$. If $BC = 20$, $AD = 36$, and $AB = 17$, what is the length of the altitude of the trapezoid?
1) 10
2) 12
3) 15
4) 16
122 Pentagon $PQRST$ has \overline{PQ} parallel to \overline{TS}. After a translation of $T_2,-5$, which line segment is parallel to $P'Q'$?
1) $R'Q'$
2) $R'S'$
3) $T'S'$
4) $T'P'$

123 What is the slope of a line that is perpendicular to the line represented by the equation $x + 2y = 3$?
1) -2
2) 2
3) $-\frac{1}{2}$
4) $\frac{1}{2}$

124 In the diagram below, circle O has a radius of 5, and $CE = 2$. Diameter AC is perpendicular to chord BD at E.

What is the length of BD?
1) 12
2) 10
3) 8
4) 4

125 Triangle PQR has angles in the ratio of $2:3:5$. Which type of triangle is $\triangle PQR$?
1) acute
2) isosceles
3) obtuse
4) right

126 In the diagram below, AB, BC, and AC are tangents to circle O at points F, E, and D, respectively, $AF = 6$, $CD = 5$, and $BE = 4$.

What is the perimeter of $\triangle ABC$?
1) 15
2) 25
3) 30
4) 60

127 In the diagram below of circle O, chord AB bisects chord CD at E. If $AE = 8$ and $BE = 9$, find the length of CE in simplest radical form.
128 In the diagram below, line k is perpendicular to plane P at point T.

Which statement is true?
1) Any point in plane P also will be on line k.
2) Only one line in plane P will intersect line k.
3) All planes that intersect plane P will pass through T.
4) Any plane containing line k is perpendicular to plane P.

129 In the diagram below of right triangle ABC, CD is the altitude to hypotenuse AB, $CB = 6$, and $AD = 5$.

What is the length of BD?
1) 5
2) 9
3) 3
4) 4

130 In the diagram below, PS is a tangent to circle O at point S, PQR is a secant, $PS = x$, $PQ = 3$, and $PR = x + 18$.

What is the length of PS?
1) 6
2) 9
3) 3
4) 27

131 In the diagram below of $\triangle BCD$, side DB is extended to point A.

Which statement must be true?
1) $m \angle C > m \angle D$
2) $m \angle ABC < m \angle D$
3) $m \angle ABC > m \angle C$
4) $m \angle ABC > m \angle C + m \angle D$
132 Tim is going to paint a wooden sphere that has a diameter of 12 inches. Find the surface area of the sphere, to the nearest square inch.

133 Two lines, AB and CRD, are parallel and 10 inches apart. Sketch the locus of all points that are equidistant from AB and CRD and 7 inches from point R. Label with an X each point that satisfies both conditions.

134 Segment AB is the diameter of circle M. The coordinates of A are $(-4,3)$. The coordinates of M are $(1,5)$. What are the coordinates of B?
1) $(6,7)$
2) $(5,8)$
3) $(-3,8)$
4) $(-5,2)$

135 What is the measure of each interior angle of a regular hexagon?
1) 60°
2) 120°
3) 135°
4) 270°

136 In the diagram below of $\triangle ACD$, B is a point on AC such that $\triangle ADB$ is an equilateral triangle, and $\triangle DBC$ is an isosceles triangle with $DB \cong BC$. Find $m\angle C$.

137 Based on the diagram below, which statement is true?

1) $a \parallel b$
2) $a \parallel c$
3) $b \parallel c$
4) $d \parallel e$
In the diagram below of circle O, radius OC is 5 cm. Chord AB is 8 cm and is perpendicular to OC at point P.

What is the length of OP, in centimeters?
1) 8
2) 2
3) 3
4) 4

Two lines are represented by the equations $\frac{1}{2}y = 6x + 10$ and $y = mx$. For which value of m will the lines be parallel?
1) -12
2) -3
3) 3
4) 12

Given: $y = \frac{1}{4}x - 3$

$y = x^2 + 8x + 12$

In which quadrant will the graphs of the given equations intersect?
1) I
2) II
3) III
4) IV

In the diagram below of $\triangle ABC$, D is a point on AB, $AC = 7$, $AD = 6$, and $BC = 18$.

The length of DB could be
1) 5
2) 12
3) 19
4) 25

When writing a geometric proof, which angle relationship could be used alone to justify that two angles are congruent?
1) supplementary angles
2) linear pair of angles
3) adjacent angles
4) vertical angles

The endpoints of AB are $A(3,2)$ and $B(7,1)$. If $A''B''$ is the result of the transformation of AB under $D_2 \circ T_{-4,3}$, what are the coordinates of A'' and B''?
1) $A''(-2,10)$ and $B''(6,8)$
2) $A''(-1,5)$ and $B''(3,4)$
3) $A''(2,7)$ and $B''(10,5)$
4) $A''(14,-2)$ and $B''(22,-4)$
144 The diagram below illustrates the construction of \(PS\) parallel to \(RQ\) through point \(P\).

Which statement justifies this construction?
1) \(m\angle 1 = m\angle 2\)
2) \(m\angle 1 = m\angle 3\)
3) \(PR \parallel RQ\)
4) \(PS \parallel RQ\)

145 In which triangle do the three altitudes intersect outside the triangle?
1) a right triangle
2) an acute triangle
3) an obtuse triangle
4) an equilateral triangle

146 Which equation represents the perpendicular bisector of \(AB\) whose endpoints are \(A(8,2)\) and \(B(0,6)\)?
1) \(y = 2x - 4\)
2) \(y = -\frac{1}{2} x + 2\)
3) \(y = -\frac{1}{2} x + 6\)
4) \(y = 2x - 12\)

147 Find the slope of a line perpendicular to the line whose equation is \(2y - 6x = 4\).

148 In right \(\triangle DEF\), \(m\angle D = 90\) and \(m\angle F\) is 12 degrees less than twice \(m\angle E\). Find \(m\angle E\).

149 Write an equation of the circle graphed in the diagram below.

150 Which compound statement is true?
1) A triangle has three sides and a quadrilateral has five sides.
2) A triangle has three sides if and only if a quadrilateral has five sides.
3) If a triangle has three sides, then a quadrilateral has five sides.
4) A triangle has three sides or a quadrilateral has five sides.
151 In the diagram below, trapezoid $ABCD$, with bases AB and DC, is inscribed in circle O, with diameter DC. If $m\angle A = 80\degree$, find $m\angle BCD$.

152 On the set of axes below, Geoff drew rectangle $ABCD$. He will transform the rectangle by using the translation $(x,y) \rightarrow (x+2,y+1)$ and then will reflect the translated rectangle over the x-axis.

153 A rectangular prism has a volume of $3x^2 + 18x + 24$. Its base has a length of $x + 2$ and a width of 3. Which expression represents the height of the prism?

1) $x + 4$
2) $x + 2$
3) 3
4) $x^2 + 6x + 8$

154 In the diagram below of $\triangle ABC$ with side AC extended through D, $m\angle A = 37\degree$ and $m\angle BCD = 117\degree$. Which side of $\triangle ABC$ is the longest side? Justify your answer.

155 What is the length of the line segment whose endpoints are $(1, -4)$ and $(9, 2)$?

1) 5
2) $2\sqrt{17}$
3) 10
4) $2\sqrt{26}$

156 Line segment AB is tangent to circle O at A. Which type of triangle is always formed when points A, B, and O are connected?

1) right
2) obtuse
3) scalene
4) isosceles
157 Triangle XYZ, shown in the diagram below, is reflected over the line $x = 2$. State the coordinates of $\triangle X'Y'Z'$, the image of $\triangle XYZ$.

158 In the diagram below of right triangle ACB, altitude CD is drawn to hypotenuse AB.

If $AB = 36$ and $AC = 12$, what is the length of AD?

1) 32
2) 6
3) 3
4) 4

159 A transversal intersects two lines. Which condition would always make the two lines parallel?

1) Vertical angles are congruent.
2) Alternate interior angles are congruent.
3) Corresponding angles are supplementary.
4) Same-side interior angles are complementary.

160 The degree measures of the angles of $\triangle ABC$ are represented by x, $3x$, and $5x - 54$. Find the value of x.

161 In the diagram below of $\triangle ABC$, D is the midpoint of AB, and E is the midpoint of BC.

If $AC = 4x + 10$, which expression represents DE?

1) $x + 2.5$
2) $2x + 5$
3) $2x + 10$
4) $8x + 20$
162 Which equation represents circle K shown in the graph below?

1) $(x + 5)^2 + (y - 1)^2 = 3$
2) $(x + 5)^2 + (y - 1)^2 = 9$
3) $(x - 5)^2 + (y + 1)^2 = 3$
4) $(x - 5)^2 + (y + 1)^2 = 9$

163 Plane R is perpendicular to line k and plane D is perpendicular to line k. Which statement is correct?
1) Plane R is perpendicular to plane D.
2) Plane R is parallel to plane D.
3) Plane R intersects plane D.
4) Plane R bisects plane D.

165 Lines k_1 and k_2 intersect at point E. Line m is perpendicular to lines k_1 and k_2 at point E.

Which statement is always true?
1) Lines k_1 and k_2 are perpendicular.
2) Line m is parallel to the plane determined by lines k_1 and k_2.
3) Line m is perpendicular to the plane determined by lines k_1 and k_2.
4) Line m is coplanar with lines k_1 and k_2.

166 Which set of numbers does not represent the sides of a right triangle?
1) $\{6, 8, 10\}$
2) $\{8, 15, 17\}$
3) $\{8, 24, 25\}$
4) $\{15, 36, 39\}$
167 The vertices of the triangle in the diagram below are \(A(7,9) \), \(B(3,3) \), and \(C(11,3) \).

What are the coordinates of the centroid of \(\triangle ABC \)?
1) (5,6)
2) (7,3)
3) (7,5)
4) (9,6)

168 How many common tangent lines can be drawn to the two externally tangent circles shown below?

1) 1
2) 2
3) 3
4) 4

169 As shown in the diagram below, a kite needs a vertical and a horizontal support bar attached at opposite corners. The upper edges of the kite are 7 inches, the side edges are \(x \) inches, and the vertical support bar is \((x + 1) \) inches.

What is the measure, in inches, of the vertical support bar?
1) 23
2) 24
3) 25
4) 26

170 In isosceles triangle \(ABC \), \(AB = BC \). Which statement will always be true?
1) \(m\angle B = m\angle A \)
2) \(m\angle A > m\angle B \)
3) \(m\angle A = m\angle C \)
4) \(m\angle C < m\angle B \)
171 A city is planning to build a new park. The park must be equidistant from school A at $(3,3)$ and school B at $(3,-5)$. The park also must be exactly 5 miles from the center of town, which is located at the origin on the coordinate graph. Each unit on the graph represents 1 mile. On the set of axes below, sketch the compound loci and label with an X all possible locations for the new park.

172 What is the converse of the statement "If Bob does his homework, then George gets candy"?
1) If George gets candy, then Bob does his homework.
2) Bob does his homework if and only if George gets candy.
3) If George does not get candy, then Bob does not do his homework.
4) If Bob does not do his homework, then George does not get candy.

173 The diagram below shows a pennant in the shape of an isosceles triangle. The equal sides each measure 13, the altitude is $x + 7$, and the base is $2x$.

What is the length of the base?
1) 5
2) 10
3) 12
4) 24

174 Write an equation of the circle whose diameter AB has endpoints $A(-4,2)$ and $B(4,-4)$. [The use of the grid below is optional.]
175 What is an equation for the circle shown in the graph below?

![Circle Graph]

1) $x^2 + y^2 = 2$
2) $x^2 + y^2 = 4$
3) $x^2 + y^2 = 8$
4) $x^2 + y^2 = 16$

176 In the diagram below of $\triangle ABC$, side BC is extended to point D, $m\angle A = x$, $m\angle B = 2x + 15$, and $m\angle ACD = 5x + 5$.

![Triangle Diagram]

What is $m\angle B$?
1) 5
2) 20
3) 25
4) 55

177 In the diagram below of $\triangle ADE$, B is a point on AE and C is a point on AD such that $BC \parallel ED$, $AC = x - 3$, $BE = 20$, $AB = 16$, and $AD = 2x + 2$. Find the length of AC.

![Triangle Diagram]

178 In scalene triangle ABC, $m\angle B = 45$ and $m\angle C = 55$. What is the order of the sides in length, from longest to shortest?
1) AB, BC, AC
2) BC, AC, AB
3) AC, BC, AB
4) BC, AB, AC

179 Given: Quadrilateral $ABCD$, diagonal $AFEC$, $AE \cong FC$, $BF \perp AC$, $DE \perp AC$, $\angle 1 \cong \angle 2$.
Prove: $ABCD$ is a parallelogram.

![Quadrilateral Diagram]
180 On the diagram of $\triangle ABC$ shown below, use a compass and straightedge to construct the perpendicular bisector of AC. [Leave all construction marks.]

181 A quadrilateral whose diagonals bisect each other and are perpendicular is a
1) rhombus
2) rectangle
3) trapezoid
4) parallelogram

182 The diagram below shows $\triangle ABC$, with \overline{AEB}, \overline{ADC}, and $\angle ACB \cong \angle AED$. Prove that $\triangle ABC$ is similar to $\triangle ADE$.

183 Triangle DEG has the coordinates $D(1,1)$, $E(5,1)$, and $G(5,4)$. Triangle DEG is rotated 90° about the origin to form $\triangle D'E'G'$. On the grid below, graph and label $\triangle DEG$ and $\triangle D'E'G'$. State the coordinates of the vertices D', E', and G'. Justify that this transformation preserves distance.

184 In the diagram below of $\triangle PAO$, \overline{AP} is tangent to circle O at point A, $OB = 7$, and $BP = 18$.

What is the length of \overline{AP}?
1) 10
2) 12
3) 17
4) 24
185 Isosceles trapezoid $ABCD$ has diagonals AC and BD. If $AC = 5x + 13$ and $BD = 11x - 5$, what is the value of x?

1) 28
2) $10\frac{3}{4}$
3) 3
4) $\frac{1}{2}$

186 Two triangles are similar, and the ratio of each pair of corresponding sides is 2:1. Which statement regarding the two triangles is not true?

1) Their areas have a ratio of 4:1.
2) Their altitudes have a ratio of 2:1.
3) Their perimeters have a ratio of 2:1.
4) Their corresponding angles have a ratio of 2:1.

187 In the diagram below of circle O, chords AD and BC intersect at E.

Which relationship must be true?

1) $\triangle CAE \cong \triangle DBE$
2) $\triangle AEC \sim \triangle BDE$
3) $\angle ACB \cong \angle CBD$
4) $\overline{CA} \cong \overline{DB}$

188 A regular pyramid with a square base is shown in the diagram below.

A side, s, of the base of the pyramid is 12 meters, and the height, h, is 42 meters. What is the volume of the pyramid in cubic meters?

189 In the diagram below of $\triangle PRT$, Q is a point on PR, S is a point on TR, QS is drawn, and $\angle RPT \cong \angle RSQ$.

Which reason justifies the conclusion that $\triangle PRT \sim \triangle SRQ$?

1) AA
2) ASA
3) SAS
4) SSS
190 The vertices of $\triangle ABC$ are $A(3,2)$, $B(6,1)$, and $C(4,6)$. Identify and graph a transformation of $\triangle ABC$ such that its image, $\triangle A'B'C'$, results in $\overline{AB} \parallel \overline{A'B'}$.
Geometry Regents Exam Questions at Random Worksheet # 38

NAME: ____________________________________

www.jmap.org

Geometry Regents at Random Worksheets

191 After a composition of transformations, the coordinates \(A(4,2), B(4,6),\) and \(C(2,6)\) become \(A'(-2,-1), B'(-2,-3),\) and \(C'(-1,-3),\) as shown on the set of axes below.

![Diagram of axes with points A, B, C, A', B', C']

Which composition of transformations was used?
1) \(R_{180} \circ D_2\)
2) \(R_{90} \circ D_2\)
3) \(D\frac{1}{2} \circ R_{180}\)
4) \(D\frac{1}{2} \circ R_{90}\)

192 Lines \(m\) and \(n\) intersect at point \(A.\) Line \(k\) is perpendicular to both lines \(m\) and \(n\) at point \(A.\)

Which statement must be true?
1) Lines \(m, n,\) and \(k\) are in the same plane.
2) Lines \(m\) and \(n\) are in two different planes.
3) Lines \(m\) and \(n\) are perpendicular to each other.
4) Line \(k\) is perpendicular to the plane containing lines \(m\) and \(n.\)

193 Given: Quadrilateral \(ABCD\) has vertices \(A(-5,6), B(6,6), C(8,-3),\) and \(D(-3,-3).\)

Prove: Quadrilateral \(ABCD\) is a parallelogram but is neither a rhombus nor a rectangle. [The use of the grid below is optional.]

194 In the diagram below, point \(P\) is the centroid of \(\triangle ABC.\)

![Diagram of triangle ABC with centroid P]

If \(PM = 2x + 5\) and \(BP = 7x + 4,\) what is the length of \(PM\)?
1) 9
2) 2
3) 18
4) 27
195 In the diagram below of right triangle ABC, altitude BD is drawn to hypotenuse AC, $AC = 16$, and $CD = 7$. What is the length of BD?
1) $3\sqrt{7}$
2) $4\sqrt{7}$
3) $7\sqrt{3}$
4) 12

197 What is the length of the line segment with endpoints $(-6,4)$ and $(2,-5)$?
1) $\sqrt{13}$
2) $\sqrt{17}$
3) $\sqrt{72}$
4) $\sqrt{145}$

198 In the diagram of $\triangle ABC$ below, Jose found centroid P by constructing the three medians. He measured CF and found it to be 6 inches. If $PF = x$, which equation can be used to find x?
1) $x + x = 6$
2) $2x + x = 6$
3) $3x + 2x = 6$
4) $x + \frac{2}{3}x = 6$

199 Tim has a rectangular prism with a length of 10 centimeters, a width of 2 centimeters, and an unknown height. He needs to build another rectangular prism with a length of 5 centimeters and the same height as the original prism. The volume of the two prisms will be the same. Find the width, in centimeters, of the new prism.
200 Side \overline{PQ} of $\triangle PQR$ is extended through Q to point T. Which statement is not always true?
1) $m\angle RQT > m\angle R$
2) $m\angle RQT > m\angle P$
3) $m\angle RQT = m\angle P + m\angle R$
4) $m\angle RQT > m\angle PQR$

203 Given: $JKLM$ is a parallelogram.
$JM \cong LN$
$\angle LMN \cong \angle LNM$
Prove: $JKLM$ is a rhombus.

201 In the diagram below of $\triangle ACE$, medians \overline{AD}, \overline{EB}, and \overline{CF} intersect at G. The length of FG is 12 cm.

What is the length, in centimeters, of GC?
1) 24
2) 12
3) 6
4) 4

204 In $\triangle ABC$, $AB \cong BC$. An altitude is drawn from B to AC and intersects AC at D. Which conclusion is not always true?
1) $\angle ABD \cong \angle CBD$
2) $\angle BDA \cong \angle BDC$
3) $AD \cong BD$
4) $AD \cong DC$

205 If two distinct planes, A and B, are perpendicular to line c, then which statement is true?
1) Planes A and B are parallel to each other.
2) Planes A and B are perpendicular to each other.
3) The intersection of planes A and B is a line parallel to line c.
4) The intersection of planes A and B is a line perpendicular to line c.
206 On the grid below, graph the points that are equidistant from both the x and y axes and the points that are 5 units from the origin. Label with an X all points that satisfy both conditions.

207 What is an equation of the line that passes through the point (7,3) and is parallel to the line 4x + 2y = 10?
1) \(y = \frac{1}{2}x - \frac{1}{2} \)
2) \(y = -\frac{1}{2}x + \frac{13}{2} \)
3) \(y = 2x - 11 \)
4) \(y = -2x + 17 \)

208 In \(\triangle KLM \), \(\angle K = 36 \) and \(KM = 5 \). The transformation \(D_2 \) is performed on \(\triangle KLM \) to form \(\triangle K'L'M' \). Find \(m\angle K' \). Justify your answer.
Find the length of \(K'M' \). Justify your answer.

209 What is the contrapositive of the statement, “If I am tall, then I will bump my head”?
1) If I bump my head, then I am tall.
2) If I do not bump my head, then I am tall.
3) If I am tall, then I will not bump my head.
4) If I do not bump my head, then I am not tall.

210 As shown in the diagram below, \(\triangle ABC \sim \triangle DEF \), \(AB = 7x \), \(BC = 4 \), \(DE = 7 \), and \(EF = x \).

What is the length of \(AB \)?
1) 28
2) 2
3) 14
4) 4

211 A circle is represented by the equation \(x^2 + (y + 3)^2 = 13 \). What are the coordinates of the center of the circle and the length of the radius?
1) \((0,3)\) and 13
2) \((0,3)\) and \(\sqrt{13}\)
3) \((0,-3)\) and 13
4) \((0,-3)\) and \(\sqrt{13}\)
212 Triangle ABC has vertices $A(0,0)$, $B(3,2)$, and $C(0,4)$. The triangle may be classified as
1) equilateral
2) isosceles
3) right
4) scalene

213 Given $\triangle ABC \sim \triangle DEF$ such that $\frac{AB}{DE} = \frac{3}{2}$. Which statement is not true?
1) $\frac{BC}{EF} = \frac{3}{2}$
2) $\frac{m\angle A}{m\angle D} = \frac{3}{2}$
3) $\frac{\text{area of } \triangle ABC}{\text{area of } \triangle DEF} = \frac{9}{4}$
4) $\frac{\text{perimeter of } \triangle ABC}{\text{perimeter of } \triangle DEF} = \frac{3}{2}$

214 In the diagram below of regular pentagon $ABCDE$, \overline{EB} is drawn.

What is the measure of $\angle AEB$?
1) 36°
2) 54°
3) 72°
4) 108°

215 Which equation represents a line perpendicular to the line whose equation is $2x + 3y = 12$?
1) $6y = -4x + 12$
2) $2y = 3x + 6$
3) $2y = -3x + 6$
4) $3y = -2x + 12$

216 Which quadrilateral has diagonals that always bisect its angles and also bisect each other?
1) rhombus
2) rectangle
3) parallelogram
4) isosceles trapezoid

217 Tangents \overline{PA} and \overline{PB} are drawn to circle O from an external point, P, and radii \overline{OA} and \overline{OB} are drawn. If $m\angle APB = 40^\circ$, what is the measure of $\angle AOB$?
1) 140°
2) 100°
3) 70°
4) 50°

218 Given: $\triangle ABC$ and $\triangle EDC$, C is the midpoint of \overline{BD} and \overline{AE}
Prove: $AB \parallel DE$
219 In circle O, diameter RS has endpoints $R(3a, 2b - 1)$ and $S(a - 6, 4b + 5)$. Find the coordinates of point O, in terms of a and b. Express your answer in simplest form.

220 The volume of a rectangular prism is 144 cubic inches. The height of the prism is 8 inches. Which measurements, in inches, could be the dimensions of the base?
1) 3.3 by 5.5
2) 2.5 by 7.2
3) 12 by 8
4) 9 by 9

221 In the diagram below of isosceles trapezoid $ABCD$, $AB = CD = 25$, $AD = 26$, and $BC = 12$.

What is the length of an altitude of the trapezoid?
1) 7
2) 14
3) 19
4) 24

222 When $\triangle ABC$ is dilated by a scale factor of 2, its image is $\triangle A'B'C'$. Which statement is true?
1) $AC \cong A'C'$$
2) $\angle A \cong \angle A'$$
3) $\text{perimeter of } \triangle ABC = \text{perimeter of } \triangle A'B'C'$$
4) $2(\text{area of } \triangle ABC) = \text{area of } \triangle A'B'C'$$

223 The diagram below shows a pair of congruent triangles, with $\angle ADB \cong \angle CDB$ and $\angle ABD \cong \angle CBD$.

Which statement must be true?
1) $\angle ADB \cong \angle CBD$
2) $\angle ABC \cong \angle ADC$
3) $AB \cong CD$
4) $AD \cong CD$

224 On the diagram below, use a compass and straightedge to construct the bisector of $\angle XYZ$. [Leave all construction marks.]

225 In $\triangle RST$, $m\angle RST = 46$ and $RS \cong ST$. Find $m\angle STR$.

226 Which equation represents a line parallel to the line whose equation is $2y - 5x = 10$?
1) $5y - 2x = 25$
2) $5y + 2x = 10$
3) $4y - 10x = 12$
4) $2y + 10x = 8$

227 As shown on the graph below, $\triangle R'S'T'$ is the image of $\triangle RST$ under a single transformation.

Which transformation does this graph represent?
1) glide reflection
2) line reflection
3) rotation
4) translation

228 If the vertex angles of two isosceles triangles are congruent, then the triangles must be
1) acute
2) congruent
3) right
4) similar

229 Which equation represents circle O with center $(2, -8)$ and radius 9?
1) $(x + 2)^2 + (y - 8)^2 = 9$
2) $(x - 2)^2 + (y + 8)^2 = 9$
3) $(x + 2)^2 + (y - 8)^2 = 81$
4) $(x - 2)^2 + (y + 8)^2 = 81$

230 Using a compass and straightedge, construct a line that passes through point P and is perpendicular to line m. [Leave all construction marks.]

231 In three-dimensional space, two planes are parallel and a third plane intersects both of the parallel planes. The intersection of the planes is a
1) plane
2) point
3) pair of parallel lines
4) pair of intersecting lines

232 In $\triangle RST$, $m\angle R = 58$ and $m\angle S = 73$. Which inequality is true?
1) $RT < TS < RS$
2) $RS < RT < TS$
3) $RT < RS < TS$
4) $RS < TS < RT$
233 What is the equation of a line passing through (2, −1) and parallel to the line represented by the equation \(y = 2x + 1\)?

1) \(y = -\frac{1}{2} x\)
2) \(y = -\frac{1}{2} x + 1\)
3) \(y = 2x - 5\)
4) \(y = 2x - 1\)

234 In the diagram below, parallelogram \(ABCD\) has diagonals \(AC\) and \(BD\) that intersect at point \(E\).

![Parallelogram Diagram]

Which expression is not always true?

1) \(\angle DAE \cong \angle BCE\)
2) \(\angle DEC \cong \angle BEA\)
3) \(AC \cong DB\)
4) \(DE \cong EB\)

235 Which transformation of the line \(x = 3\) results in an image that is perpendicular to the given line?

1) \(r_{x=\text{axis}}\)
2) \(r_{y=\text{axis}}\)
3) \(r_{y=x}\)
4) \(r_{x=1}\)

236 In the diagram of \(\triangle ABC\) and \(\triangle DEF\) below, \(AB \cong DE\), \(\angle A \cong \angle D\), and \(\angle B \cong \angle E\).

![Triangle Diagram]

Which method can be used to prove \(\triangle ABC \cong \triangle DEF\)?

1) SSS
2) SAS
3) ASA
4) HL

237 On the line segment below, use a compass and straightedge to construct equilateral triangle \(ABC\).

[Leave all construction marks.]
238 Square $LMNO$ is shown in the diagram below.

What are the coordinates of the midpoint of diagonal LN?

1) $\left(4 \frac{1}{2}, -2 \frac{1}{2}\right)$
2) $\left(-3 \frac{1}{2}, 3 \frac{1}{2}\right)$
3) $\left(-2 \frac{1}{2}, 3 \frac{1}{2}\right)$
4) $\left(-2 \frac{1}{2}, 4 \frac{1}{2}\right)$

239 $\triangle ABC$ is similar to $\triangle DEF$. The ratio of the length of AB to the length of DE is $3:1$. Which ratio is also equal to $3:1$?

1) $\frac{\text{m} \angle A}{\text{m} \angle D}$
2) $\frac{\text{m} \angle B}{\text{m} \angle F}$
3) $\frac{\text{area of } \triangle ABC}{\text{area of } \triangle DEF}$
4) $\frac{\text{perimeter of } \triangle ABC}{\text{perimeter of } \triangle DEF}$

240 In the diagram below, tangent PA and secant PBC are drawn to circle O from external point P.

If $PB = 4$ and $BC = 5$, what is the length of PA?

1) 20
2) 9
3) 8
4) 6

241 In the diagram below of circle C, QR is a diameter, and $Q(1,8)$ and $C(3.5,2)$ are points on a coordinate plane. Find and state the coordinates of point R.

242 The volume, in cubic centimeters, of a sphere whose diameter is 6 centimeters is
1) 12π
2) 36π
3) 48π
4) 288π

243 In the diagram of circle O below, chords AB and CD are parallel, and BD is a diameter of the circle.

If $m\overline{AD} = 60$, what is $m\angle CDB$?
1) 20
2) 30
3) 60
4) 120

244 One step in a construction uses the endpoints of \overline{AB} to create arcs with the same radii. The arcs intersect above and below the segment. What is the relationship of AB and the line connecting the points of intersection of these arcs?
1) collinear
2) congruent
3) parallel
4) perpendicular

245 The coordinates of the vertices of parallelogram $ABCD$ are $A(-2, 2), B(3, 5), C(4, 2)$, and $D(-1, -1)$. State the coordinates of the vertices of parallelogram $A'B'C'D'$ that result from the transformation $r_{y-axis} \circ T_{2,-3}$. [The use of the set of axes below is optional.]

246 Point A is located at $(4, -7)$. The point is reflected in the x-axis. Its image is located at
1) $(-4, 7)$
2) $(-4, -7)$
3) $(4, 7)$
4) $(7, -4)$

247 Given: Two is an even integer or three is an even integer.
Determine the truth value of this disjunction. Justify your answer.
248 In the diagram below of $\triangle AGE$ and $\triangle OLD$, $\angle GAE \cong \angle LOD$, and $AE \cong OD$.

To prove that $\triangle AGE$ and $\triangle OLD$ are congruent by SAS, what other information is needed?
1) $GE \cong LD$
2) $AG \cong OL$
3) $\angle AGE \cong \angle OLD$
4) $\angle AEG \cong \angle ODL$

249 In the diagram below of circle O, PA is tangent to circle O at A, and PBC is a secant with points B and C on the circle.

If $PA = 8$ and $PB = 4$, what is the length of BC?
1) 20
2) 16
3) 15
4) 12

250 Triangle ABC has coordinates $A(-6,2)$, $B(-3,6)$, and $C(5,0)$. Find the perimeter of the triangle. Express your answer in simplest radical form. [The use of the grid below is optional.]

251 In the diagram below of $\triangle ACT$, $BE \parallel AT$.

If $CB = 3$, $CA = 10$, and $CE = 6$, what is the length of ET?
1) 5
2) 14
3) 20
4) 26
252. Which illustration shows the correct construction of an angle bisector?

1)
2)
3)
4)

253. In the diagram below of circle O, chords \(AD \) and \(BC \) intersect at \(E \), \(\angle AEC = 87 \), and \(\angle BED = 35 \).

What is the degree measure of \(\angle CEA \)?

1) 87
2) 61
3) 43.5
4) 26

254. In \(\triangle ABC \), \(AB = 7 \), \(BC = 8 \), and \(AC = 9 \). Which list has the angles of \(\triangle ABC \) in order from smallest to largest?

1) \(\angle A, \angle B, \angle C \)
2) \(\angle B, \angle A, \angle C \)
3) \(\angle C, \angle B, \angle A \)
4) \(\angle C, \angle A, \angle B \)

255. Line \(n \) intersects lines \(l \) and \(m \), forming the angles shown in the diagram below.

Which value of \(x \) would prove \(l \parallel m \)?

1) 2.5
2) 4.5
3) 6.25
4) 8.75

256. Which statement is logically equivalent to "If it is warm, then I go swimming"?

1) If I go swimming, then it is warm.
2) If it is warm, then I do not go swimming.
3) If I do not go swimming, then it is not warm.
4) If it is not warm, then I do not go swimming.
257 In $\triangle ABC$ and $\triangle DEF$, $\frac{AC}{DF} = \frac{CB}{FE}$. Which additional information would prove $\triangle ABC \sim \triangle DEF$?
1) $AC = DF$
2) $CB = FE$
3) $\angle ACB \cong \angle DFE$
4) $\angle BAC \cong \angle EDF$

258 In the diagram of $\triangle KLM$ below, $m\angle L = 70$, $m\angle M = 50$, and MK is extended through N.

What is the measure of $\angle LKN$?
1) 60°
2) 120°
3) 180°
4) 300°

259 If $\triangle JKL \cong \triangle MNO$, which statement is always true?
1) $\angle KLI \cong \angle NMO$
2) $\angle KJL \cong \angle MON$
3) $\overline{JL} \cong \overline{MO}$
4) $\overline{JK} \cong \overline{ON}$

260 A man wants to place a new bird bath in his yard so that it is 30 feet from a fence, f, and also 10 feet from a light pole, P. As shown in the diagram below, the light pole is 35 feet away from the fence.

How many locations are possible for the bird bath?
1) 1
2) 2
3) 3
4) 0

261 In the diagram below, \overline{PA} and \overline{PB} are tangent to circle O, OA and OB are radii, and OP intersects the circle at C. Prove: $\angle AOP \cong \angle BOP$
262. In the diagram below, tangent ML and secant MNK are drawn to circle O. The ratio $m\angle LN : m\angle NK : m\angle KL$ is $3:4:5$. Find $m\angle LMK$.

263. Through a given point, P, on a plane, how many lines can be drawn that are perpendicular to that plane?
1) 1
2) 2
3) more than 2
4) none

264. Which statement is the negation of “Two is a prime number” and what is the truth value of the negation?
1) Two is not a prime number; false
2) Two is not a prime number; true
3) A prime number is two; false
4) A prime number is two; true

265. The lines represented by the equations $y + \frac{1}{2}x = 4$ and $3x + 6y = 12$ are
1) the same line
2) parallel
3) perpendicular
4) neither parallel nor perpendicular

266. What is an equation of circle O shown in the graph below?

267. A circle has the equation $(x - 2)^2 + (y + 3)^2 = 36$. What are the coordinates of its center and the length of its radius?
1) $(-2,3)$ and 6
2) $(2,-3)$ and 6
3) $(-2,3)$ and 36
4) $(2,-3)$ and 36
268. What is an equation of the line that contains the point \((3, -1) \) and is perpendicular to the line whose equation is \(y = -3x + 2 \)?

1) \(y = -3x + 8 \)
2) \(y = -3x \)
3) \(y = \frac{1}{3}x \)
4) \(y = \frac{1}{3}x - 2 \)

269. In the diagram below, \(\triangle ABC \) is inscribed in circle \(P \). The distances from the center of circle \(P \) to each side of the triangle are shown.

Which statement about the sides of the triangle is true?

1) \(AB > AC > BC \)
2) \(AB < AC \) and \(AC > BC \)
3) \(AC > AB > BC \)
4) \(AC = AB \) and \(AB > BC \)

270. In rhombus \(ABCD \), the diagonals \(\overline{AC} \) and \(\overline{BD} \) intersect at \(E \). If \(AE = 5 \) and \(BE = 12 \), what is the length of \(AB \)?

1) \(7 \)
2) \(10 \)
3) \(13 \)
4) \(17 \)

271. What is the inverse of the statement “If two triangles are not similar, their corresponding angles are not congruent”?

1) If two triangles are similar, their corresponding angles are not congruent.
2) If corresponding angles of two triangles are not congruent, the triangles are not similar.
3) If two triangles are similar, their corresponding angles are congruent.
4) If corresponding angles of two triangles are congruent, the triangles are similar.

272. What is the slope of a line that is perpendicular to the line whose equation is \(3x + 5y = 4 \)?

1) \(\frac{3}{5} \)
2) \(\frac{3}{5} \)
3) \(\frac{5}{3} \)
4) \(\frac{5}{3} \)
273 The equation of a circle is \((x - 2)^2 + (y + 4)^2 = 4\). Which diagram is the graph of the circle?

1)

2)

3)

4)

274 In \(\triangle ABC\), \(m\angle A = 95\), \(m\angle B = 50\), and \(m\angle C = 35\). Which expression correctly relates the lengths of the sides of this triangle?
1) \(AB < BC < CA\)
2) \(AB < AC < BC\)
3) \(AC < BC < AB\)
4) \(BC < AC < AB\)

275 In the diagram below, \(\triangle ABC\) is circumscribed about circle \(O\) and the sides of \(\triangle ABC\) are tangent to the circle at points \(D, E,\) and \(F\).

If \(AB = 20\), \(AE = 12\), and \(CF = 15\), what is the length of \(AC\)?
1) 8
2) 15
3) 23
4) 27

276 Point \(A\) is not contained in plane \(B\). How many lines can be drawn through point \(A\) that will be perpendicular to plane \(B\)?
1) one
2) two
3) zero
4) infinite
277 In the diagram below of parallelogram $STUV$, $SV = x + 3$, $VU = 2x - 1$, and $TU = 4x - 3$. What is the length of SV?

1) 5
2) 2
3) 7
4) 4

278 In the diagram below, under which transformation will $\triangle A'B'C'$ be the image of $\triangle ABC$?

1) rotation
2) dilation
3) translation
4) glide reflection

279 In the diagram below, a right circular cone has a diameter of 8 inches and a height of 12 inches. What is the volume of the cone to the nearest cubic inch?

1) 201
2) 481
3) 603
4) 804

280 Which expression represents the volume, in cubic centimeters, of the cylinder represented in the diagram below?

1) $\frac{1}{6} \pi$
2) $\frac{3}{2} \pi$
3) $\frac{9}{7} \pi$
4) $3\frac{8}{8} \pi$
281 The coordinates of the vertices of $\triangle ABC$ $A(1,3)$, $B(-2,2)$ and $C(0,-2)$. On the grid below, graph and label $\triangle A'B'C''$, the result of the composite transformation $D_2 \circ T_{3,-2}$. State the coordinates of A'', B'', and C''.

282 Towns A and B are 16 miles apart. How many points are 10 miles from town A and 12 miles from town B?
1) 1
2) 2
3) 3
4) 0

283 In $\triangle PQR$, $\angle PRQ$ is a right angle and RT is drawn perpendicular to hypotenuse PQ. If $PT = x$, $RT = 6$, and $TQ = 4x$, what is the length of PQ?
1) 9
2) 12
3) 3
4) 15

284 Which diagram represents a correct construction of equilateral $\triangle ABC$, given side AB?
285 On the set of axes below, solve the following system of equations graphically for all values of x and y.

$$y = (x - 2)^2 + 4$$
$$4x + 2y = 14$$

286 In the diagram below of circle C, $m\overline{QT} = 140$, and $m\angle P = 40$.

287 In the diagram below, $\triangle ABC \cong \triangle XYZ$.

Which two statements identify corresponding congruent parts for these triangles?

1) $\overline{AB} \cong \overline{XY}$ and $\angle C \cong \angle Y$
2) $\overline{AB} \cong \overline{YZ}$ and $\angle C \cong \angle X$
3) $\overline{BC} \cong \overline{XY}$ and $\angle A \cong \angle Y$
4) $\overline{BC} \cong \overline{YZ}$ and $\angle A \cong \angle X$

288 What is an equation of a circle with its center at $(-3,5)$ and a radius of 4?

1) $(x - 3)^2 + (y + 5)^2 = 16$
2) $(x + 3)^2 + (y - 5)^2 = 16$
3) $(x - 3)^2 + (y + 5)^2 = 4$
4) $(x + 3)^2 + (y - 5)^2 = 4$

289 A line segment has endpoints $(4,7)$ and $(1,11)$. What is the length of the segment?

1) 5
2) 7
3) 16
4) 25

What is $m\overline{RS}$?

1) 50
2) 60
3) 90
4) 110
290 The pentagon in the diagram below is formed by five rays.

What is the degree measure of angle x?
1) 72
2) 96
3) 108
4) 112

291 The equation of line k is $y = \frac{1}{3}x - 2$. The equation of line m is $-2x + 6y = 18$. Lines k and m are
1) parallel
2) perpendicular
3) the same line
4) neither parallel nor perpendicular

292 What is the image of point $A(4,2)$ after the composition of transformations defined by $R_{90^\circ} \circ r_{y=x}$?
1) $(-4,2)$
2) $(4,-2)$
3) $(-4,-2)$
4) $(2,-4)$

293 A right circular cone has a base with a radius of 15 cm, a vertical height of 20 cm, and a slant height of 25 cm. Find, in terms of π, the number of square centimeters in the lateral area of the cone.

294 Line segment AB is shown in the diagram below.

Which two sets of construction marks, labeled I, II, III, and IV, are part of the construction of the perpendicular bisector of line segment AB?
1) I and II
2) I and III
3) II and III
4) II and IV

295 Using a compass and straightedge, and AB below, construct an equilateral triangle with all sides congruent to AB. [Leave all construction marks.]
296 What is the length of the line segment whose endpoints are \(A(−1,9) \) and \(B(7,4) \)?

1) \(\sqrt{61} \)
2) \(\sqrt{89} \)
3) \(\sqrt{205} \)
4) \(\sqrt{233} \)

297 In the diagram below, two parallel lines intersect circle \(O \) at points \(A, B, C, \) and \(D \), with \(\overparen{AB} = x + 20 \) and \(\overparen{DC} = 2x − 20 \). Find \(\overparen{AB} \).

\[
\begin{align*}
\widehat{AB} &= x + 20 \\
\widehat{DC} &= 2x - 20
\end{align*}
\]

298 In the diagram below, circles \(X \) and \(Y \) have two tangents drawn to them from external point \(T \). The points of tangency are \(C, A, S, \) and \(E \). The ratio of \(TA \) to \(AC \) is 1:3. If \(TS = 24 \), find the length of \(SE \).

\[
\text{What technique can be used to prove that } \triangle PST \sim \triangle RQT?
\]

1) SAS
2) SSS
3) ASA
4) AA

299 In an equilateral triangle, what is the difference between the sum of the exterior angles and the sum of the interior angles?

1) 180°
2) 120°
3) 90°
4) 60°

300 In the diagram below, \(\overline{SQ} \) and \(\overline{PR} \) intersect at \(T \), \(\overline{PQ} \) is drawn, and \(\overline{PS} \parallel \overline{QR} \).

\[
\text{What technique can be used to prove that } \triangle PST \sim \triangle RQT?
\]

1) SAS
2) SSS
3) ASA
4) AA
301 Point P is on line m. What is the total number of planes that are perpendicular to line m and pass through point P?
1) 1
2) 2
3) 0
4) infinite

302 In the diagram below, point M is located on AB. Sketch the locus of points that are 1 unit from AB and the locus of points 2 units from point M. Label with an X all points that satisfy both conditions.

303 Given the true statement, "The medians of a triangle are concurrent," write the negation of the statement and give the truth value for the negation.

304 The coordinates of the vertices of $\triangle RST$ are $R(-2,3)$, $S(4,4)$, and $T(2,-2)$. Triangle $R'S'T'$ is the image of $\triangle RST$ after a rotation of 90° about the origin. State the coordinates of the vertices of $\triangle R'S'T'$. [The use of the set of axes below is optional.]

305 Point A lies in plane B. How many lines can be drawn perpendicular to plane B through point A?
1) one
2) two
3) zero
4) infinite
306 In the diagram below of trapezoid $RSUT$, $RS \parallel TU$, X is the midpoint of RT, and V is the midpoint of SU.

If $RS = 30$ and $XV = 44$, what is the length of TU?
1) 37
2) 58
3) 74
4) 118

307 In the diagram below, the length of the legs AC and BC of right triangle ABC are 6 cm and 8 cm, respectively. Altitude CD is drawn to the hypotenuse of $\triangle ABC$.

What is the length of AD to the nearest tenth of a centimeter?
1) 3.6
2) 6.0
3) 6.4
4) 4.0

308 Write an equation for circle O shown on the graph below.

309 What is the solution of the following system of equations?

\begin{align*}
y &= (x + 3)^2 - 4 \\
y &= 2x + 5
\end{align*}

1) $(0, -4)$
2) $(-4, 0)$
3) $(-4, -3)$ and $(0, 5)$
4) $(-3, -4)$ and $(5, 0)$

310 The equation of a circle is $x^2 + (y - 7)^2 = 16$. What are the center and radius of the circle?

1) center = $(0, 7)$; radius = 4
2) center = $(0, 7)$; radius = 16
3) center = $(0, -7)$; radius = 4
4) center = $(0, -7)$; radius = 16
311 In the diagram below of \(\triangle ABC \), \(D \) is a point on \(AB \), \(E \) is a point on \(BC \), \(AC \parallel DE \), \(CE = 25 \) inches, \(AD = 18 \) inches, and \(DB = 12 \) inches. Find, to the nearest tenth of an inch, the length of \(EB \).

312 The diagram below represents a rectangular solid.

Which statement must be true?
1) \(EH \) and \(BC \) are coplanar
2) \(FG \) and \(AB \) are coplanar
3) \(EH \) and \(AD \) are skew
4) \(FG \) and \(CG \) are skew

313 The Parkside Packing Company needs a rectangular shipping box. The box must have a length of 11 inches and a width of 8 inches. Find, to the nearest tenth of an inch, the minimum height of the box such that the volume is at least 800 cubic inches.

314 A paint can is in the shape of a right circular cylinder. The volume of the paint can is \(600\pi \) cubic inches and its altitude is 12 inches. Find the radius, in inches, of the base of the paint can. Express the answer in simplest radical form. Find, to the nearest tenth of a square inch, the lateral area of the paint can.

315 In the diagram below of circle \(O \), diameter \(AB \) is perpendicular to chord \(CD \) at \(E \). If \(AO = 10 \) and \(BE = 4 \), find the length of \(CE \).

316 What is an equation of the line that is perpendicular to the line whose equation is \(y = \frac{3}{5}x - 2 \) and that passes through the point \((3, -6)\)?
1) \(y = \frac{5}{3}x - 11 \)
2) \(y = -\frac{5}{3}x + 11 \)
3) \(y = -\frac{5}{3}x - 1 \)
4) \(y = \frac{5}{3}x + 1 \)
317 In the diagram below, the vertices of $\triangle DEF$ are the midpoints of the sides of equilateral triangle ABC, and the perimeter of $\triangle ABC$ is 36 cm. What is the length, in centimeters, of EF?

1) 6
2) 12
3) 18
4) 4

318 In the diagram below of $\triangle ABC$, medians AD, BE, and CF intersect at G.

If $CF = 24$, what is the length of FG?

1) 8
2) 10
3) 12
4) 16

319 In the diagram below, line p intersects line m and line n.

If $m \angle 1 = 7x$ and $m \angle 2 = 5x + 30$, lines m and n are parallel when x equals

1) 12.5
2) 15
3) 87.5
4) 105

320 In the diagram of $\triangle ABC$ and $\triangle EDC$ below, AE and BD intersect at C, and $\angle CAB \cong \angle CED$.

Which method can be used to show that $\triangle ABC$ must be similar to $\triangle EDC$?

1) SAS
2) AA
3) SSS
4) HL
321 Using a compass and straightedge, on the diagram below of RS, construct an equilateral triangle with RS as one side. [Leave all construction marks.]

322 Which transformation is not always an isometry?
1) rotation
2) dilation
3) reflection
4) translation

323 In $\triangle FGH$, $m\angle F = 42$ and an exterior angle at vertex H has a measure of 104. What is $m\angle G$?
1) 34
2) 62
3) 76
4) 146

324 In $\triangle ABC$, $AB = 5$ feet and $BC = 3$ feet. Which inequality represents all possible values for the length of AC, in feet?
1) $2 \leq AC \leq 8$
2) $2 < AC < 8$
3) $3 \leq AC \leq 7$
4) $3 < AC < 7$

325 In the diagram of $\triangle ABC$ below, $AB = 10$, $BC = 14$, and $AC = 16$. Find the perimeter of the triangle formed by connecting the midpoints of the sides of $\triangle ABC$.

326 The angles of triangle ABC are in the ratio of $8:3:4$. What is the measure of the smallest angle?
1) 12°
2) 24°
3) 36°
4) 72°

327 Which line is parallel to the line whose equation is $4x + 3y = 7$ and also passes through the point ($-5,2$)?
1) $4x + 3y = -26$
2) $4x + 3y = -14$
3) $3x + 4y = -7$
4) $3x + 4y = 14$
328 What is an equation of the line that passes through the point \((-2, 5)\) and is perpendicular to the line whose equation is \(y = \frac{1}{2}x + 5\)?

1) \(y = 2x + 1\)
2) \(y = -2x + 1\)
3) \(y = 2x + 9\)
4) \(y = -2x - 9\)

329 Given the system of equations: \(y = x^2 - 4x\)
\[\begin{align*}
\text{and } x &= 4
\end{align*}\]

The number of points of intersection is

1) 1
2) 2
3) 3
4) 0

330 In the diagram below of quadrilateral \(ABCD\) with diagonal \(BD\), \(\angle A = 93^\circ\), \(\angle ADB = 43^\circ\), \(\angle C = 3x + 5^\circ\), \(\angle BDC = x + 19^\circ\), and \(\angle DBC = 2x + 6^\circ\). Determine if \(AB\) is parallel to \(DC\). Explain your reasoning.

331 What is the slope of a line perpendicular to the line whose equation is \(2y = -6x + 8\)?

1) \(-3\)
2) \(\frac{1}{6}\)
3) \(\frac{1}{3}\)
4) \(-6\)

332 In which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?

1) triangle
2) hexagon
3) octagon
4) quadrilateral

333 A pentagon is drawn on the set of axes below. If the pentagon is reflected over the \(y\)-axis, determine if this transformation is an isometry. Justify your answer. [The use of the set of axes is optional.]
334 In the diagram below, \(MATH \) is a rhombus with diagonals \(AH \) and \(MT \).

If \(m \angle HAM = 12 \), what is \(m \angle AMT \)?
1) 12
2) 78
3) 84
4) 156

335 What is an equation of circle \(O \) shown in the graph below?

336 In \(\triangle ABC \), point \(D \) is on \(AB \), and point \(E \) is on \(BC \) such that \(DE \parallel AC \). If \(DB = 2, DA = 7 \), and \(DE = 3 \), what is the length of \(AC \)?
1) 8
2) 9
3) 10.5
4) 13.5

337 In the diagram below, \(\triangle RST \) is a \(3 - 4 - 5 \) right triangle. The altitude, \(h \), to the hypotenuse has been drawn. Determine the length of \(h \).

338 Which equation represents the circle whose center is \((-2,3)\) and whose radius is 5?
1) \((x - 2)^2 + (y + 3)^2 = 5\)
2) \((x + 2)^2 + (y - 3)^2 = 5\)
3) \((x + 2)^2 + (y - 3)^2 = 25\)
4) \((x - 2)^2 + (y + 3)^2 = 25\)

339 In \(\triangle ABC \), \(m\angle A = x \), \(m\angle B = 2x + 2 \), and \(m\angle C = 3x + 4 \). What is the value of \(x \)?
1) 29
2) 31
3) 59
4) 61
340 Triangle ABC has coordinates $A(2,-2)$, $B(2,1)$, and $C(4,-2)$. Triangle $A'B'C'$ is the image of $\triangle ABC$ under $T_{5,-2}$. On the set of axes below, graph and label $\triangle ABC$ and its image, $\triangle A'B'C'$. Determine the relationship between the area of $\triangle ABC$ and the area of $\triangle A'B'C'$. Justify your response.

341 Find an equation of the line passing through the point $(5,4)$ and parallel to the line whose equation is $2x+y=3$.

342 The lateral faces of a regular pyramid are composed of
1) squares
2) rectangles
3) congruent right triangles
4) congruent isosceles triangles

343 In the diagram below, tangent \overline{AB} and secant \overline{ACD} are drawn to circle O from an external point A, $AB = 8$, and $AC = 4$.

What is the length of CD?
1) 16
2) 13
3) 12
4) 10

344 In the diagram below of quadrilateral $ABCD$, $AD \cong BC$ and $\angle DAE \cong \angle BCE$. Line segments AC, DB, and FG intersect at E.
Prove: $\triangle AEF \cong \triangle CEG$

345 In a coordinate plane, how many points are both 5 units from the origin and 2 units from the x-axis?
1) 1
2) 2
3) 3
4) 4
346 The number of degrees in the sum of the interior angles of a pentagon is
1) 72
2) 360
3) 540
4) 720

347 In the diagram below of \(\triangle TEM \), medians \(TB, EC, \) and \(MA \) intersect at \(D \), and \(TB = 9 \). Find the length of \(TD \).

349 If the surface area of a sphere is represented by \(144 \pi \), what is the volume in terms of \(\pi \)?
1) \(36\pi \)
2) \(48\pi \)
3) \(216\pi \)
4) \(288\pi \)

350 Solve the following system of equations graphically.
\[2x^2 - 4x = y + 1 \]
\[x + y = 1 \]
351 On the set of coordinate axes below, graph the locus of points that are equidistant from the lines $y = 6$ and $y = 2$ and also graph the locus of points that are 3 units from the y-axis. State the coordinates of all points that satisfy both conditions.

![Coordinate Axes]

352 The diagram below shows isosceles trapezoid $ABCD$ with $AB \parallel DC$ and $AD \cong BC$. If $m\angle BAD = 2x$ and $m\angle BCD = 3x + 5$, find $m\angle BAD$.

![Trapezoid Diagram]

353 Which expression best describes the transformation shown in the diagram below?

1) same orientation; reflection
2) opposite orientation; reflection
3) same orientation; translation
4) opposite orientation; translation

![Transformation Diagram]

354 What is the distance between the points $(-3,2)$ and $(1,0)$?

1) $2\sqrt{2}$
2) $2\sqrt{3}$
3) $5\sqrt{2}$
4) $2\sqrt{5}$

355 What are the center and the radius of the circle whose equation is $(x - 5)^2 + (y + 3)^2 = 16$?

1) $(-5,3)$ and 16
2) $(5,-3)$ and 16
3) $(-5,3)$ and 4
4) $(5,-3)$ and 4
356 Triangle HKL has vertices $H(-7,2)$, $K(3,-4)$, and $L(5,4)$. The midpoint of HL is M and the midpoint of LK is N. Determine and state the coordinates of points M and N. Justify the statement: MN is parallel to HK. [The use of the set of axes below is optional.]

357 In the diagram below, car A is parked 7 miles from car B. Sketch the points that are 4 miles from car A and sketch the points that are 4 miles from car B. Label with an X all points that satisfy both conditions.

358 In the diagram below of $\triangle ADB$, $\angle BDA = 90$, $AD = 5\sqrt{2}$, and $AB = 2\sqrt{15}$.

What is the length of BD?
1) $\sqrt{10}$
2) $\sqrt{20}$
3) $\sqrt{50}$
4) $\sqrt{110}$

359 In the diagram below of circle O, chords AB and CD intersect at E.

If $CE = 10$, $ED = 6$, and $AE = 4$, what is the length of EB?
1) 15
2) 12
3) 6.7
4) 2.4
360 Which graph represents a circle with the equation
\((x - 5)^2 + (y + 1)^2 = 9\)?

1)

2)

3)

4)

361 Which geometric principle is used to justify the construction below?

1) A line perpendicular to one of two parallel lines is perpendicular to the other.
2) Two lines are perpendicular if they intersect to form congruent adjacent angles.
3) When two lines are intersected by a transversal and alternate interior angles are congruent, the lines are parallel.
4) When two lines are intersected by a transversal and the corresponding angles are congruent, the lines are parallel.

362 In the diagram below of circle \(O\), chords \(AB\) and \(CD\) intersect at \(E\).

If \(m\angle AEC = 34^\circ\) and \(m\widehat{AC} = 50^\circ\), what is \(m\widehat{DB}\)?

1) 16
2) 18
3) 68
4) 118
363 If a line segment has endpoints $A(3x + 5, 3y)$ and $B(x - 1, -y)$, what are the coordinates of the midpoint of AB?
1) $(x + 3, 2y)$
2) $(2x + 2, y)$
3) $(2x + 3, y)$
4) $(4x + 4, 2y)$

364 In a given triangle, the point of intersection of the three medians is the same as the point of intersection of the three altitudes. Which classification of the triangle is correct?
1) scalene triangle
2) isosceles triangle
3) equilateral triangle
4) right isosceles triangle

365 In $\triangle DEF$, $m\angle D = 3x + 5$, $m\angle E = 4x - 15$, and $m\angle F = 2x + 10$. Which statement is true?
1) $DF = FE$
2) $DE = FE$
3) $m\angle E = m\angle F$
4) $m\angle D = m\angle F$

366 Lines j and k intersect at point P. Line m is drawn so that it is perpendicular to lines j and k at point P. Which statement is correct?
1) Lines j and k are in perpendicular planes.
2) Line m is in the same plane as lines j and k.
3) Line m is parallel to the plane containing lines j and k.
4) Line m is perpendicular to the plane containing lines j and k.

367 The coordinates of the endpoints of \overline{AB} are $A(0, 0)$ and $B(0, 6)$. The equation of the perpendicular bisector of \overline{AB} is
1) $x = 0$
2) $x = 3$
3) $y = 0$
4) $y = 3$

368 If $\triangle ABC \sim \triangle XYZ$, $m\angle A = 50$, and $m\angle C = 30$, what is $m\angle X$?
1) 30
2) 50
3) 80
4) 100

369 When a quadrilateral is reflected over the line $y = x$, which geometric relationship is not preserved?
1) congruence
2) orientation
3) parallelism
4) perpendicularity

370 What is the slope of a line that is perpendicular to the line whose equation is $3x + 4y = 12$?
1) $\frac{3}{4}$
2) $-\frac{3}{4}$
3) $\frac{4}{3}$
4) $-\frac{4}{3}$
371 Determine whether the two lines represented by the equations $y = 2x + 3$ and $2y + x = 6$ are parallel, perpendicular, or neither. Justify your response.

372 Which geometric principle is used in the construction shown below?

1) The intersection of the angle bisectors of a triangle is the center of the inscribed circle.
2) The intersection of the angle bisectors of a triangle is the center of the circumscribed circle.
3) The intersection of the perpendicular bisectors of the sides of a triangle is the center of the inscribed circle.
4) The intersection of the perpendicular bisectors of the sides of a triangle is the center of the circumscribed circle.

373 Juliann plans on drawing $\triangle ABC$, where the measure of $\angle A$ can range from 50° to 60° and the measure of $\angle B$ can range from 90° to 100°. Given these conditions, what is the correct range of measures possible for $\angle C$?
1) 20° to 40°
2) 30° to 50°
3) 80° to 90°
4) 120° to 130°

374 In the diagram below of $\triangle ACD$, E is a point on AD and B is a point on AC, such that $EB \parallel DC$. If $AE = 3$, $ED = 6$, and $DC = 15$, find the length of EB.

375 Based on the construction below, which statement must be true?

1) $m\angle ABD = \frac{1}{2} m\angle CBD$
2) $m\angle ABD = m\angle CBD$
3) $m\angle ABD = m\angle ABC$
4) $m\angle CBD = \frac{1}{2} m\angle ABD$
376 In the diagram below, \(\Delta A'B'C' \) is a transformation of \(\Delta ABC \), and \(\Delta A''B''C'' \) is a transformation of \(\Delta A'B'C' \).

The composite transformation of \(\Delta ABC \) to \(\Delta A''B''C'' \) is an example of a
1) reflection followed by a rotation
2) reflection followed by a translation
3) translation followed by a rotation
4) translation followed by a reflection

377 A transformation of a polygon that always preserves both length and orientation is
1) dilation
2) translation
3) line reflection
4) glide reflection

378 In the diagram below of \(\triangle HQP \), side \(\overline{HP} \) is extended through \(P \) to \(T \), \(\angle QPT = 6x + 20 \), \(\angle HQP = x + 40 \), and \(\angle PHQ = 4x - 5 \). Find \(\angle QPT \).

379 In the diagram below of circle \(O \), chord \(\overline{AB} \) is parallel to chord \(\overline{CD} \).

Which statement must be true?
1) \(\overline{AC} \cong \overline{BD} \)
2) \(\overline{AB} \cong \overline{CD} \)
3) \(\overline{AB} \cong \overline{CD} \)
4) \(\overline{ABD} \cong \overline{CDB} \)
380 The length of \overline{AB} is 3 inches. On the diagram below, sketch the points that are equidistant from A and B and sketch the points that are 2 inches from A. Label with an \times all points that satisfy both conditions.